weighted graph造句
例句與造句
- Theorem 2 . 5 suppose g be 2 connected weighted graph with a
定理2石設(shè)g是2連通賦權(quán)閡終。 - Therefore , studying the weighted graph can obtain the more general result
因此,研究賦權(quán)圖將得到更普遍的結(jié)論。 - In this paper , we mainly study heavy cycles in weighted graphs and ore type condition
本篇論文主要研究了賦權(quán)圖中的重圈存在性與ore型條件 - In the third section , we get the extremal graph of weighted graph whose connectivity is 2
在第三節(jié)中得到連通度為2的賦權(quán)圖在ore型條件下的極圖 - Theorem 5 let g is a 2 - connected nonhamilton weighted graph satisfying conditions d1 and d2
定理5設(shè)g是滿足條件di和dz的2一連通非hamiltort賦權(quán)圖 - It's difficult to find weighted graph in a sentence. 用weighted graph造句挺難的
- Etc . studied the heaviest cycle in weighted graph and got many results in [ 2 ] , [ 3 ]
Bondy ,范更華等圖論專家在這方面做了大量研究,得到許多結(jié)果 - A graph g is called a weighted graph if each edge e is assigned a non - negative number w ( e ) , called the weight of e
圖g稱為賦權(quán)圖,若每條邊e被指定一個(gè)非負(fù)數(shù)w ( e ) ,稱為e的權(quán)。 - In this thesis , grid partitioning is converted to an unoriented and weighted graph , on which partitioning algorithm is studied
本文將網(wǎng)格分區(qū)問(wèn)題轉(zhuǎn)化為無(wú)向賦權(quán)圖的分區(qū),在圖上研究分區(qū)算法。 - Gave fan type condition in [ 1 ] . research on the heaviest cycle in weighted graph is an important aspect . j . a . bondy and fan g . h
研究賦權(quán)圖中的重目是研究賦權(quán)圖的一個(gè)重要內(nèi)容;并且賦權(quán)圖中的重圈問(wèn)題是圖中長(zhǎng)圈問(wèn)題的相應(yīng)推廣 - In the second section , we generalize theorem 2 . 3 on the existence of the longest cycle of ore type condition to weighted graphs and get theorem 2 . 5
在第二節(jié)中主要把有關(guān)ore型條件下圖中長(zhǎng)圈存在性的下述定理推廣到賦權(quán)圖電得到定理2 - Since 1980 , many graph theorists such as j . a . bondy , b . bollobas , h . j . broersma and fan genghua etc . have been studying the existence of heavy cycles in weighted graphs and gained a lot of important results
Broersma以及范更華等開(kāi)始研究賦權(quán)圖中重圈的存在性,得到了許多重要的結(jié)論。 - Finally , some key technologies for 2d graphs reconstruction are studied . the issues concerned include the recognition and presentation of topologic relations among graphs entities and a directed and weighted graph model established to describe the relations and techniques on dimension driven
本文最后一部分詳細(xì)討論了圖形二維重建的關(guān)鍵技術(shù),包括識(shí)別圖素間的拓?fù)潢P(guān)系,建立帶權(quán)有向圖的拓?fù)潢P(guān)系動(dòng)態(tài)表示模型,尺寸驅(qū)動(dòng)技術(shù)及輔助線線型重構(gòu)技術(shù)等。 - In this paper , we disscuss the problem on cyclic structure of graphs . we provide three sufficient conditions on the existence of long cycles passing through a specified vertex , a specified edge in unweighted graphs , and three sufficient conditions on the existence of heavy cycles in weighted graph
本文主要研究了非賦權(quán)圖及賦權(quán)圖的圈性結(jié)構(gòu)問(wèn)題,給出了非賦權(quán)圖過(guò)指定點(diǎn)、指定邊長(zhǎng)圈存在的三個(gè)充分條件,并且還給出了賦權(quán)圖重圈存在的三個(gè)充分條件 - The first section of this paper gives a brief introduction about the basic concepts , terminology and symboles which are used in this paper . in section 2 , we give an accurate discussion about the structure of a kind of graphs in [ 6 ] and get the extremal graph . in the third section , we introduce a new concept - - - - implicit weighted degree and using it we give a condition on the existence of heavy cycles in weighted graphs
在本文的第一部分中,我們簡(jiǎn)要介紹了論文中所涉及的一些概念,術(shù)語(yǔ)和符號(hào);在第二部分中,我們對(duì)中圖的結(jié)構(gòu)進(jìn)行了精確的討論,給出了一個(gè)極圖;在第三部分,我們定義了一個(gè)新參數(shù)?隱賦權(quán)度,給出了賦權(quán)圖中重圈存在的隱賦權(quán)度條件;最后,在第四部分,我們給出了賦權(quán)圖中過(guò)兩點(diǎn)的重圈存在性的dirac型條件。